IME-100 Interdisciplinary Design and Manufacturing

Introduction to Circuits

After completing this Tutorial, you will be able to:

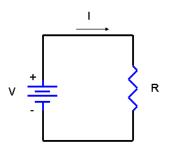
- Identify circuit components (resistors & their value, LEDs, switches, breadboard)
- Build LED circuit on breadboard
- Build a switch circuit on breadboard

Introduction to Electrical Circuits

There is plenty of resources available online to learn the basic concepts of electricity and electrical circuits. Here is one useful resource:

http://www.youtube.com/watch?v=fDvZOp9Oqro

For more information about voltage, current, resistance and the Ohm's law, watch the following video:


http://www.youtube.com/watch?v=J4Vq-xHqUo8

Come prepared for discussions, answer questions, and ask questions when you don't understand some concepts.

Key terminologies to focus on:

- Static electricity
- Electrons
- Electric current
- Electric Voltage
- Sources of Electric Voltage
- Wire or conductor
- Resistor
- Resistance
- Potentiometer (variable resistance)
- Switch
- Light source (lamp, LED)
- Electrical symbols (voltage source, wire, resistor, switch, light source)
- Measuring electricity (Volt, Amp, Ohm, Watt)
- Ohm's Law (V = IR)
- Series circuit
- Parallel circuit

<u>Example</u>: In a simple circuit made up of a 12 V battery connected directly to a 5Ω resistor, calculate the amount of current flowing through the circuit.

Power Supply

• Circuits need power supplies to drive electrons (current)

Spec: Voltage, Current, Amp-Hr

• Sources of power:

Battery

Electrical outlet

Green sources:

Solar, wind

<u>Note:</u> D.C. – direct current A.C. – alternating current

Resistance values & color codes

• Resistor – electrical component that limits or 'resists' the flow of electrons (current) in a circuit

All resistors are not created equal

They come in different values, shapes, colors and types

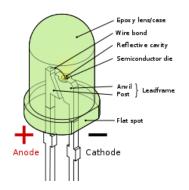
• Types: Carbon composition, carbon film, metal film, thick film, thin film, wirewound, *potentiometers* (variable resistance), photoresistor, thermistor

Color	Value	Multiplier	Tolerance	
Black	0	×10 ⁰	± 20%	
Brown	1	×10 ¹	±1%	
Red	2	×10 ²	± 2%	
Orange	3	×10 ³	± 3%	
Yellow	4	×10 ⁴	- 0, + 100%	
Green	5	×10 ⁵	± 0.5%	
Blue	6	×10 ⁶	± 0.25%	
Violet	7	×10 ⁷	± 0.10%	
Gray	8	×10 ⁸	± 0.05%	
White	9	×10 ⁹	± 10%	
Gold	-	×10 ⁻¹	± 5%	
Silver	-	×10 ⁻²	± 10%	
None	e e e e e e e e e e e e e e e e e e e	tulätfe s in e	± 20%	

• Resistor values are determined from color codes

Example:

Green = 5, Blue = 6, Red = 2 Resistance = 56 x 10^2 = 5600 Ω = 5.6 K Ω Last band of Gold => Tolerance = ± 5%



<u>Exercise</u>: Determine the nominal resistance values of these resistors, given their band colors:

- 1) Red, Org, Blu, Gld =
- 2) Blu, Blk, Brn, Red =

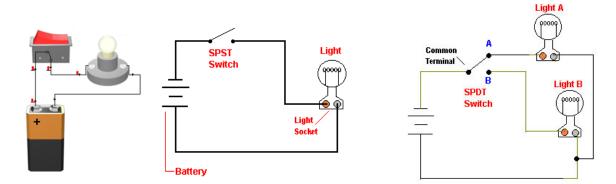
Light Emitting Diode (LED)

- LED is a light source manufactured from semiconductor material.
- They are used as indicator lamps in many devices and are gaining interest for automotive, household and industrial lighting applications

LED electronic symbol

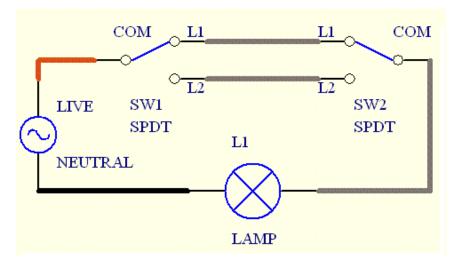
Red, Green, and Blue (RGB) LEDs

LED based energy efficient lighting:



Switches

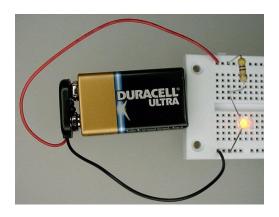
- Circuits need: power supply and other useful devices such as resistors, switches, lights, sensors, buzzers, etc.
- Example: Controlling light (s) with switch

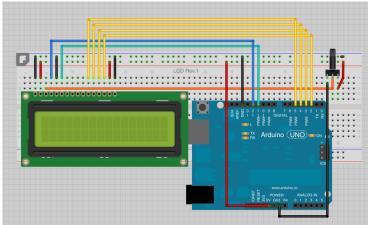


Controlling single light with SPST switch

Controlling two lights with SPDT switch

http://catalog.miniscience.com/catalog/electricity/Knife_Switch_Diagrams.html


Example: two-way switch control of light



http://www.electronics-project-design.com/LightSwitchWiring.html

Prototyping

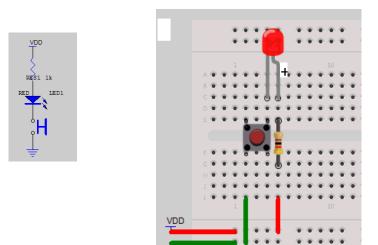
- A **prototype** is an early sample or model built to test a concept or process or to act as a thing to be replicated or learned from.
- Solderless **breadboards** are the fastest way to hook up a circuit for quick setup & testing.

Breadboard

- A construction base for prototyping electronics.
- Soldering is not required.
- Sockets are already connected

Both sides: vertically

Inside: horizontally.

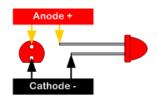

0	1 C C C C C C	f g h i i = = = = 1	
	****	*****	
	*****	WWWWW	1.1

-	*****	****	
	*****	****	
	*****	****	
	*****	*****	
	10		
	*****	*****	
	*****	*****	
	00000		1 K K K
1			1 1 1
	100000		
	00000		

- 11	20 * * * * *	* * * * * * *	
	*****	*****	
	*****	*****	

	****	XXXX	
	25****	* * * * * * ?!	

	3		
-	a b c d e	Ighij	


Schematic Diagram to Actual Wiring on Breadboard

Schematic diagram symbols:

<u>Example</u>: Build this pushbutton controlled LED circuit on your breadboard and demonstrate to your instructor

Identifying LED polarity