

Electrical and Computer Engineering Department

Kettering University

IME-100

ECE

Lab 4

4-1 G. Tewolde, IME100-ECE, 2017

Getting Started
 1. Laboratory Computers

i. Log-in with User Name: Kettering Student (no password

required)

ii. IME-100 information (Lab presentation, files, etc.) in folder on

desktop

iii. Arduino programming software on desktop

iv. At the end of lab, Logout of computer; arrange keyboard and

mouse

2. Laboratory kit

i. Arduino board, circuit prototyping breadboard, electronic

components: LEDs, resistors, pushbutton switch, potentiometer,

light sensor.

ii. At the end of lab, turn instrument power off, dismantle circuit,

unplug Arduino USB from PC, neatly arrange leads on bench

4-2 G. Tewolde, IME100-ECE, 2017

IME-100, ECE Lab4
Arduino Analog Input & Output

In this laboratory exercise, you will do the following:

• Explain the difference between digital and analog signals

• Use Arduino Analog Input functions to read analog signals

• Read analog input from potentiometer

• Read analog input from light sensor

• Explain how Arduino generates analog outputs

• Control external devices using analog output

• Write program to Arduino microcontroller

• Work on exercises using analog input and output

4-3 G. Tewolde, IME100-ECE, 2017

Analog Signal

• Digital inputs such as those coming from switches (ON/OFF)

could be handled by the Arduino without any conversion. Such

digital signals are represented as HIGH and LOW, or 1 and 0.

– Use digitalRead(pin) to access digital inputs to Arduino

• However, most of the things in nature are not in digital form. For

example, if you want to build a weather station, your Arduino

should be able to handle temperature, humidity, wind speed,

rainfall, etc. The signals coming from these sensors are not

restricted to HIGH and LOW (1 and 0, or ON/OFF), rather they

can typically assume a wide range of possible values. This type of

signals is called analog.

• Arduino has a built in hardware called analog-to-digital

convertor (ADC) that can be used for converting analog signals

to digital format so that they can be processed by the Arduino.

4-4 G. Tewolde, IME100-ECE, 2017

Reading Analog Signal

• The analogRead(analogPin) function is used to
convert an analog signal applied at one of the 6
analog pins of the Arduino Uno (A0, A1, … A5).

• You do not need to call pinMode() to set the pin as
an input before calling analogRead()

• The result of analogRead() is a 10-bit binary
number in decimal range 0 to 1023.

• For example, if 2V analog signal is applied to pin A5,
the analogRead(A5) function returns (2V/5V)
*1023 = 409 (assuming a reference voltage 5V)

4-5 G. Tewolde, IME100-ECE, 2017

Potentiometer for Analog Signal

• A potentiometer is a device that provides a variable resistance, which
can be converted to analog voltage for the Arduino to read.

• A potentiometer has three pins. Apply 5V and GND to the two end
terminals, then connect the slider or blade terminal to the Arduino
analog input pin to obtain a voltage that is proportional to the variable
resistance.

• Potentiometer could be used for

 volume control, brightness control,

 and speed control knobs.

• As a simple example, the Arduino

 program in the next slide uses the

 potentiometer for controlling the

 blinking speed (or delay) of LED..

4-6 G. Tewolde, IME100-ECE, 2017

Displaying Data on PC Monitor

• Arduino provides Serial library to allow communication
between the Arduino board and a computer or other
devices.

• All Arduino boards have at least one serial port.
– It communicates on digital pins 0 (RX) and 1 (TX) as well as with the

computer via USB.

– Thus, if you use these functions, you cannot also use pins 0 and 1 for
digital input or output.

• You can use the Arduino environment's built-in serial
monitor to communicate with an Arduino board.

• Click the serial monitor button in the toolbar (top right) and
select the same baud rate used in the call to begin().

4-7 G. Tewolde, IME100-ECE, 2017

Displaying Data on PC Monitor …

Example 1: Use of the serial monitor to display the data you receive

from a potentiometer. Experiment and see how the data changes

when you turn the potentiometer dial up and down.

/*
 AnalogReadSerial
 */

void setup() {
 // initialize serial communication
 //at 9600 bits per second:
 Serial.begin(9600);
}

void loop() {
 // read the input on analog pin 2:
 int sensorValue = analogRead(A2);

 // print out the value you read:
 Serial.println(sensorValue);

 // delay 1 sec between reads
 delay(1000);
}

4-8 G. Tewolde, IME100-ECE, 2017

Potentiometer for Analog Signal

// input pin for the potentiometer
int anPin = A2;
// output pin for the LED
int ledPin = 13;
// variable to store the analog voltage
int anInput = 0;

void setup() {
 // declare the ledPin as an OUTPUT:
 pinMode(ledPin, OUTPUT);
}

void loop() {
 // read the value from the sensor:
 anInput = analogRead(anPin);
 // turn the ledPin on
 digitalWrite(ledPin, HIGH);
 // control delay with analog input value
 delay(anInput);
 // turn the ledPin off:
 digitalWrite(ledPin, LOW);
 // control delay with analog input value
 delay(anInput);
}

Example 2: Use of the potentiometer to control the flashing of an LED. Assume the
potentiometer is connected to the analog input pin A2. The LED on the Arduino
board, connected to digital pin 13 could be used for the output.

4-9 G. Tewolde, IME100-ECE, 2017

Exercise 1: Use Potentiometer to
Control timing of Traffic Light

• For the traffic light circuit you built in a previous exercise, add a
potentiometer to control the timing of the signals.

• You need to set the timing for the green and red signals to be
proportional to the analog input value. For example, if the analog
input is 100, set the duration of each of the red and green signals
to 1 second. If the analog input is 500, set the red and green
signal durations to 5 second, and so on. The yellow signal will
always have a constant duration of 1 second.

• You will still need to provide the override feature as before using
the pushbutton for control.

• Complete your Arduino program and demonstrate to the
instructor your working traffic light circuit with the timing control
using potentiometer, and with an override feature using the
pushbutton switch.

4-10 G. Tewolde, IME100-ECE, 2017

• We will use a photoresistor as a light sensor

• A photoresistor’s resistance to electrical current changes
with the intensity of light illumination. It is also called a
light dependent resistance (LDR).

• A photoresistor is made of cadmium sulfide. It responds to
visible light similarly to the human eye.

• Photoresistor resistance could range between about 200
KOhm in the dark and 500 ohm in a brightly lit room.

• Application: light sensitive switches – e.g. streetlights,
vehicle headlights, garden lights, that automatically turn on
at dusk

Light Sensor
Basic Operation

4-11 G. Tewolde, IME100-ECE, 2017

Light Sensor
Measuring Brightness

Photoresistor (LDR)

• Voltage reading is inversely proportional to light levels.
• Analog voltage reading ranges from 0 ~ 5V based on the LDR value
• The green wire is the point you read analog voltage from.
• Let us try to measure the voltage in various illuminations.
• In your experiment, you can use the light sensor provided to you and

mounted in the front of your robot facing towards the floor.

4-12 G. Tewolde, IME100-ECE, 2017

Light Sensor
Display Sensor Reading on PC Monitor

 Example 3: Use of the serial monitor to display the data you read from the light
sensor. Experiment and see how the data changes when you change the light
intensity by either covering the sensor with your hand or flashing a light (from your
phone’s flashlight) onto it.

#define lightPin A0

void setup() {
 // initialize serial communication
 //at 9600 bits per second:
 Serial.begin(9600);
}

void loop() {
 // read the input on analog pin lightPin:
 int sensorValue = analogRead(lightPin);

 // print out the value you read:
 Serial.println(sensorValue);

 // delay 1 sec between reads
 delay(1000);
}

4-13 G. Tewolde, IME100-ECE, 2017

Exercise 2: Modify Traffic Light
Operation at Night

• For the traffic light circuit you built in Exercise 1, add a light sensor that
will be used for controlling the operating mode of the traffic light
signals.

• First “calibrate” the light sensor by taking several sensor measurements
under varying lighting intensities.

• Find a “threshold” value that splits the light intensity measurements
into two, “dark” readings and “light” readings.

• Implement an Arduino program that controls the operation of the traffic
signal as follows:

– During the day time, the traffic signal operates in the “normal” operation mode;
i.e. “green” (for 4 seconds), “yellow” (for 1 seconds), then “red” (for 4 seconds).

– During the night time, the traffic signal only flashes the “red” light every one
second; i.e. one second on and one second off.

• Complete your Arduino program and demonstrate to the instructor your
working traffic light circuit with the required behavior.

4-14 G. Tewolde, IME100-ECE, 2017

• PWM based analog outputs are available on pins 3, 5, 6, 9, 10, and 11 of the
Arduino Uno. They are denoted by the ~ symbol as a prefix to the pin numbers
on the board. Note that these are different from the analog input ports.

• analogRead(analogPin) function gets its input from the given analog pin.

• analogWrite(PWMpin,value) sends a PWM signal with a duty cycle in the range
between 0 (always off) and 255 (always on), on the specified pin.

Analog Output
• The Arduino Uno does not actually support a

‘real’ analog output signal. But it can emulate
analog output using pulse width modulation
(PWM).

• PWM operates by turning a digital pin on and
off very quickly in a periodic fashion. Duty
cycle is the percentage of the time the signal
stays HIGH relative to the period.

4-15 G. Tewolde, IME100-ECE, 2017

Analog Output
Example 3: Use the analogWrite() function to control LED brightness and
demonstrate a fading effect

int led = 9; // the pin that the LED is attached to

int brightness = 0; // how bright the LED is

int fadeAmount = 5; // how many points to fade the LED by

// the setup routine runs once when you press reset:

void setup() {

 // declare pin 9 to be an output:

 pinMode(led, OUTPUT);

}

// the loop routine runs over and over again forever:

void loop() {

 // set the brightness of pin 9:

 analogWrite(led, brightness);

 // change the brightness for next time through the loop:

 brightness = brightness + fadeAmount;

 // reverse the direction of the fading at the ends of the fade:

 if (brightness == 0 || brightness == 255) {

 fadeAmount = -fadeAmount ;

 }

 // wait for 30 milliseconds to see the dimming effect

 delay(30);

} 4-16 G. Tewolde, IME100-ECE, 2017

Exercise 3: Smart Street Light

• Use a bright “white” LED to emulate a street light.

• Make the street light ‘smart’ by using a light sensor as
feedback.

• Control the ‘smart’ street light in such a way that the
brightness of the street light is adjusted based on the
measurements from the sensor readings.
– Therefore, during the day the smart street light is completely off.

– As the sun goes down, the smart street light gradually turns itself on
at intensity levels that are appropriate to give sufficient lighting to
the environment.

– When it is completely dark, the ‘smart’ street light gives off its
brightest light.

• Compare and contrast the ‘smart’ street light to a regular
street light, based on energy efficiency and other factors.

4-17 G. Tewolde, IME100-ECE, 2017

Due: Beginning of 5th Week Lab

Making Connections
You are now able to design and implement different types of applications

using a microcontroller, such as the Arduino and additional analog and

digital devices such as sensors and switches. Research and identify an

existing product or application that has an analog or digital sensor, a

microcontroller and an output device that it controls. Explain each

component of the product or application.

For the Curious You
Research and brainstorm/painstorm with your lab partners and present

innovative ways of improving specific existing products/services by

using a microcontroller, sensors and actuators. For extra credit

opportunity propose new a product/service with good analysis on its

market potential.

Turn in a 2-3 pages report for your answers.

Homework: Making Connections and

For the Curious You …

4-18 G. Tewolde, IME100-ECE, 2017

Homework: Online tutorial

From the online tutorial and additional resources come
prepared to the next week class with background information
on the following topics:
• Interfacing sensors
• Motor control
• Bluetooth communication

Next week:
• Use a motor control circuit to drive the robot
• Basic robot control
• Robotic sensors
• Use ultrasonic sensor to avoid crashes
• Light sensor and line following algorithm

4-19 G. Tewolde, IME100-ECE, 2017

Finishing Up
(and to get full-credit in the lab)

1. Clean-up at bench – Leave it better than you found it!

i. Pick-up any spare parts, wire-trimmings, etc

ii. Detangle and coil wire leads

iii. Soldering stations and tools neatly arranged

iv. Turn off instrument power, arrange neatly

v. Logout of computer; arrange keyboard and mouse

vi. Neatly arrange the chairs

2. Check-out with the instructor

i. Leave the check-out sheet with your group names at

your station

4-20 G. Tewolde, IME100-ECE, 2017

Lab 4 Check-Out Sheet
(to be left on the bench at the end of lab)

Group Members (please print name clearly):

Instructor (check all that apply):

□ Exercise 1 demo

□ Exercise 2 demo

□ Exercise 3 demo

□ Print-outs of program codes for all three

exercises. Include group member names in

comment at the top of your program file.

□ Computer Logout

□ Bench clean-up

 Wires, detangled and coiled,

 Disposal of wire clipping, etc.

 Arduino circuit dismantled

 Arduino unplugged from PC USB

 Instrument power off and arranged

 Keyboard and Mouse arranged

 Chairs arranged

Additional Comments:

4-21 G. Tewolde, IME100-ECE, 2017

